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A compact, high-resolution Fourier-transform spectrometer for atmospheric near-ultraviolet spectros-
copy has been installed at the Jet Propulsion Laboratory’s Table Mountain Facility (34.4 °N, 117.7 °W,
elevation 2290 m). This instrument is designed with an unapodized resolving power near 500,000 at 300
nm to provide high-resolution spectra from 290 to 675 nm for the quantification of column abundances
of trace atmospheric species. The measurement technique used is spectral analysis of molecular ab-
sorptions of solar radiation. The instrument, accompanying systems designs, and results of the atmo-
spheric hydroxyl column observations are described. © 2001 Optical Society of America
OCIS codes: 010.1280, 120.0280, 300.6300, 300.6540.

1. Introduction

Long-term measurements of transient species in the
HO,, NO,, CIO,, and BrO, families are important for
the validation of models of stratospheric chemistry
and transport and to verify that the phaseout of chlo-
rofluorocarbons mandated by the Montreal Protocol
is having the desired effect on stratospheric compo-
sition. The free radicals OH, NO,, NO3, and BrO
are key intermediates in catalytic ozone destruction
cycles and are suitable candidates for detection by
ground-based UV-visible spectroscopy. Of these
species, the OH radical plays the most important role
from the surface through the mesosphere.

A number of techniques have been employed to
characterize the distribution of upper-atmospheric
OH including in situ laser-induced fluorescence,2
far-infrared spectroscopy,®¢ and near-UV spectro-
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scopy.”® Only a few ground-based installations
that use either a polyetalon Fabry—Perot,10-12 a grat-
ing instrument,!3.14 or a Fourier-transform spectrom-
eter (FTS)15 have an extended data record for the
vertical column of OH that would allow the analysis
of temporal variations and their relation to atmo-
spheric chemistry.

Infrared FTS’s have been wused effectively
for many years in atmospheric composition
measurements.516-19  Significant strides in the ap-
plication of FTS’s to the study of visible and
near-UV spectra have been made relatively recent-
ly20-24; however, their use in atmospheric remote
sensing has been limited.15-25:26  Although the FTS
design suffers from a multiplex disadvantage2°
compared with a grating spectrometer with an ar-
ray detector when used in the UV, the combined
advantages of high throughput, high spectral reso-
lution, broad spectral coverage, and wavelength cal-
ibration stability and accuracy,2? all in a compact
design, make the FTS an attractive alternative for
atmospheric field measurements. For these rea-
sons a Fourier-transform ultraviolet spectrometer
(FTUVS) was developed for use in the visible and
near UV to detect and quantify terrestrial atmo-
spheric absorptions of solar radiation.

When the FTUVS is used in the direct solar imag-
ing mode, the 27-day rotation period at the solar
equator, which induces a Doppler shift (maximum
0.38 cm ™) in the solar spectral features at opposing
solar limbs, can be utilized to discriminate the ter-
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Fig. 1. FTUVS instrument system at the NASA JPL Table Moun-
tain Facility.

restrial absorptions within the solar Fraunhofer
structure.’325 This mode places special require-
ments on the object tracking and imaging system that
delivers light to the spectrometer.

The design of an instrument used to select and
track on a solar limb, and achieve high spectral res-
olution to discriminate the terrestrial absorption fea-
tures, is described in this paper. A demonstration of
the instrument, applied to the measurement of ter-
restrial OH column abundances since July 1997, is
also presented.

2. Instrument Description

The FTUVS system is located at the Jet Propulsion
Laboratory’s (JPL’s) Table Mountain Facility
(34.4 °N, 117.7 °W, elevation 2290 m). The instru-
ment is comprised of the three basic subsystems as
shown in Fig. 1: (1) a heliostat for tracking the Sun
or Moon; (2) a beam-defining telescope with aperture
and field stops, which also provides a feedback image
for closed-loop tracking; and (3) an interferometer
that records spectra of the selected source (Sun,
Moon, or zenith sky). In addition, a data-acquisition
and instrument control system allows collection and
coadding of multiple scans to improve the signal-to-
noise ratio (SNR).

A. Heliostat

The heliostat, constructed by DFM Engineering of
Longmont, Colo., is located on the second floor of the
building within the dome structure and is exposed to
ambient conditions. The heliostat primary and sec-
ondary mirrors, 50.8- and 32-cm Zerodur substrates,
respectively, both aluminum coated with SiO, and
MgF, overcoats, were sized to provide an unvignetted
0.5-deg field of view and a 20-cm-diameter beam.
The equatorially mounted heliostat primary mirror is
driven in right ascension and declination to track any
celestial object to within an accuracy of 1.8 arc sec/
min. The light beam from the heliostat passes

through a 25-cm-diameter UV-grade fused silica be-
fore reaching the first-floor temperature-controlled
instrument room.

B. Telescope

In the instrument room the beam passes through the
telescope aperture stop before reaching the afocal
Gregorian telescope primary. The telescope consists
of confocal parabolic mirrors coupled to an Invar me-
tering rod for thermal stability. The telescope off-
axis parabola design is free from spherical
aberration, coma, and astigmatism. The design also
minimizes reflection losses by use of only two sur-
faces to compress the beam. The off-axis parabola
telescope optics are aluminum coated, SiO, and MgF,,
overcoated, with a \/8 wave front.

The telescope primary is an f/3.2, 20-cm-diameter
off-axis segment of a parabolic mirror that focuses the
light beam onto a reflective, oxygen-free copper field
stop. The field stop aperture allows part of the fo-
cused image to pass through to one of two telescope
secondary mirrors where it is recollimated by an
f/3.2, 6.4-cm-diameter parabolic mirror for delivery
to the FTUVS interferometer. The rest of the image
is reflected by the aluminum-coated field stop toward
a 3.3-cm-diameter / = 30.5-cm parabolic secondary.
This mirror collimates the light and delivers it
through neutral-density filters to a focusing lens and
a CCD camera. The image is displayed on a televi-
sion monitor, captured by a frame grabber board, and
processed with image analysis software developed at
JPL. The image position in the CCD frame is used
to provide closed-loop tracking correction signals to
the heliostat motor driver.

C. Interferometer

The collimated light beam from the telescope is di-
rected toward the FTUVS interferometer (shown
schematically in Fig. 2). The FTUVS was designed
and built at the JPL. It is a flex-pivot-supported,
voice-coil-actuated, active-aligned plane mirror inter-
ferometer with an etendue of 2 X 10 * cm? sr.28
Plane mirrors were chosen to minimize the number of
reflections and reduce wave-front distortion. The
interferometer moving mirror mechanism is a paral-
lelogram consisting of four tubes constructed from
152-pm-thick rolled Invar for thermal and mechani-
cal stability, connected by eight Bendix flex pivots.
The lower, horizontal side of the parallelogram sup-
ports a mirror. This arm of the parallelogram is
driven by a voice coil actuator along an essentially
frictionless porch swing path moving the mirror hor-
izontally 5 cm.

The mirror is moved at a constant velocity (=0.15%
rms) by a Hewlett-Packard (HP) Model 5507A laser
positioning system servo-axis driver. This system
uses a 2.1-MHz Zeeman split, linearly polarized, two-
frequency He—Ne laser. The polarized beams are
split one each into the two interferometer arms by a
small polarizing spot coating on the beam-splitter
front surface. The Doppler-shifted frequency of the
beam from the moving mirror arm is compared with
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Fig. 2. FTUVS interferometer subsystem schematic. PZT, piezoelectric transducer; A/D, analog to digital converter; APD, avalanche

photodiode.

the laser reference frequency for measurement and
control of the scan mirror velocity. We also use the
He-Ne beam to produce an interferogram sampling
trigger signal by mixing the 2.1-MHz Zeeman split
laser reference frequency with the Doppler-shifted
moving mirror arm laser frequency to produce a laser
fringe marker.

The intrinsic mechanical alignment accuracy of
this system is better than 1 prad over 1 cm of travel.
To achieve the desired mirror tilt stability of 0.1
prad over 5 cm of mechanical travel (to maintain
high fringe contrast at high spectral resolution), an
active tilt compensation system was added by use of
a servo-controlled, piezoelectric actuator driving
the fixed mirror to match the moving mirror tilt.2°
The servo is activated by three miniature p-i-n pho-
todiodes sensing the phase of the 6-mm-diameter
HP laser positioning system He—Ne laser reference
beam at three places in the beam. A phase com-
parator determines the phase mismatch and pro-
duces the voltage that is required to drive the three
piezostacks behind the fixed mirror to null the
phase mismatch. The advantage of a heterodyne
(Zeeman) laser system over a dc system employed in
some commercial FTS designs is that alignment
lock can be achieved and maintained without me-
chanical dithering, which is required to produce
fringes.

Optics for the interferometer, beam splitter, com-
pensator, and mirror substrates were figured by IC
Optical of Great Britain. Coatings on the inter-
ferometer mirrors are aluminum with a SiO, over-
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coat. The interferometer beam splitter has a
multilayer dielectric coating, applied by Barr Asso-
ciates, Inc., with 30-50% reflectivity and 250-650
nm at a 45-deg incidence angle. The beam splitter
also has a central spot coating that divides the two
orthogonally polarized components of the He—Ne
reference laser into the two arms of the interferom-
eter.

For measurements of the OH column abundance, a
narrow-bandpass interference filter, 75 mm in diam-
eter, is placed at the entrance to the interferometer.
Its bandpass is centered at 307.8 nm where the peak
transmission is 45%. The full-width at half-
maximum (FWHM) of this filter is 3.8 nm, and out-
of-band rejection is greater than 10~ 7. The filter is
used to isolate the strongest OH rotational absorp-
tion lines in the (0,0) vibrational band, X?II — A®3,
electronic transition.

The detector is a 5-mm-diameter UV-enhanced av-
alanche photodiode with a quantum efficiency of
greater than 6% in the UV and a current gain of 150.
The FTUVS instrument system has been operated
successfully from 290 to 675 nm.

D. Data System

In digitizing the signal, it is necessary to subdivide
the laser fringes because the OH lines are at a wave
number close to a multiple of the laser wave number.
It is therefore not possible to use an electronic band-
pass filter to isolate one laser frequency alias (of a
width of 7899 cm™!) and sample it simply with the
laser fringes. To accomplish the subdivision of laser



Fig. 3. Spectral retrieval of terrestrial OH lines by use of solar Doppler differencing:
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top row, positions and relative intensities of strong

OH lines; second row, west solar limb spectrum (dot—dash curve), east spectrum (solid curve), and shifted west spectrum (dotted curve);
third row, ratio spectra (solid curve) and fitted OH reference spectra (dot—dash curve); bottom row, residuals after fit of observed lines.

fringes, we used an analog phase-locked loop. The
voltage-controlled oscillator of the phase-locked loop
was selected for its low jitter noise. The laser fringe
phase detector has two symmetrical outputs and was
implemented in a fast integrated circuit to react to
errors of the order of a few nanoseconds. A 125-Hz
active filter with differential inputs is used to reject
the frequency of the laser zero crossings, which is
typically in the 6-12-kHz range. In addition, the
offset of this active filter was nulled to avoid a static
phase error when the circuit is fed with a constant
frequency. This reduces phase detector outputs in
the constant velocity mode of operation. The result-
ing digitized raw interferogram data are recorded to
a large hard disk. The system can sustain data
rates up to 10° samples/s, at 2 bytes/sample.

E. Data Reduction

The instrument produces nearly single-sided inter-
ferograms that are individually phase corrected3?
and Fourier transformed. These spectra are then
averaged for the desired period of measurement.
For the OH column observations, spectra are col-
lected over a 15-min period at each solar limb.
These summed east and west limb solar spectra are
interpolated on a finer grid when the spectrum is
convolved with a sinc function of a width determined
by the instrument scan parameters. The necessary
spectral shift (approximately 0.28 cm 1) to be applied
to the west limb data to match the solar Fraunhofer
features of the east limb spectrum is determined by
minimization of the residuals in a linear- least-
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Fig. 4. Diurnal OH column abundance versus air mass measured
on 11 May 2000, plotted out to four air masses. Vertical bars
represent the *1o statistical error in the fitted OH column.
Points are plotted at the average value in the range of air masses
during a 15-min integration period. This range increases with
increasing air mass. SZA, solar zenith angle.

squares matching of the two spectra (see Fig. 3).
The east limb spectrum is then divided by the shifted
west limb spectrum. The terrestrial OH absorption
feature appears in the ratio as either a reduction in
the ratio (terrestrial OH absorption in the east limb
spectrum divided by the west limb solar background)
or as an increase in the ratio (east limb background
divided by OH absorption in the west limb spectrum).
The residual baseline slope is then removed, and the
absorption signatures of five to seven OH absorption
lines are fitted to a synthetic Doppler line shape for
OH at 250 K, convolved with the instrument line
shape. This average OH column temperature of 250
K was chosen based on a calculated OH density-
weighted model of the temperature profile.3! Tem-
perature sensitivity studies of the integrated OH line
absorption cross sections32:33 demonstrated that the
retrieved column abundance varied only =7% for a
+30 K temperature change of approximately 250 K.
The synthetic OH absorption line fit is adjusted to
minimize the square deviation between the fit and
the measured OH feature. The resulting measured
line intensity and the calculated absorption cross sec-
tion of the line are then used to determine the slant
column of OH. We convert this to vertical column
abundance by dividing the slant column by the air
mass (approximately the secant of the solar zenith
angle). Observations are obtained for air masses up
to five (object zenith angles of 78 deg). Below this air
mass, refraction has an insignificant effect on the
slant column path length.

3. Results

The derived OH column is obtained from a weighted
average, proportional to the line strength, of the
strongest OH absorption lines. Over 180 OH diur-
nal column data sets were acquired beginning in July
1997 for solar zenith angles of 10—78 deg (air masses
of 1.02-5.0). Figure 4 presents a single day of the
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measured OH vertical column and its diurnal varia-
tion (local noon is near the center of the figure).
Each point is derived from sequential 15-min inte-
grations near the solar west and east limbs. Forty
spectra are acquired, summed, and averaged to cre-
ate each 15-min integrated data set. The SNR at
local noon in these integrations, as measured by the
+10 noise level outside the bandpass of the optical
filter, is approximately 1700:1 under clear-sky condi-
tions (minimal source noise contribution from haze or
clouds). For the case of FTUVS, where the noise
contribution from the detector and from instrument
emission is negligible, the theoretical SNR is given
by34
Nt 1/2
SNR = 3vd|—| ,
3
where 87 is the spectral resolution of 0.06 cm ™!, ® is
the modulation efficiency of 0.6, N is the number of
signal electrons of 1.5 X 10° s7! (cm 1) !, ¢ is the
total integration time per interferogram of 22 s, and
Av is the width of the band-limiting filter of 400 cm .

The value computed by the above expression yields
a SNR of 1752, which agrees closely with the mea-
sured value.

The residuals from fits to the east/west ratio spec-
tra exhibit features that are larger than the mea-
sured photon noise (Fig. 4). These features have
also been observed in previous OH column abun-
dance studies that used both grating!314¢ and
FTS’s.1525 The observed features could be attribut-
able to spatial inhomogeneity in the solar emission
spectra from the east and west solar limbs. Alter-
natively, the features could arise from time-
dependent artifacts from the interferometer itself.
Artifacts can result from coherent phase errors that
occur at optical path differences that are not captured
by the phase correction algorithm. These would in-
clude imperfect operation of the active alignment sys-
tem, the shear motion combined with imperfect
flatness of the moving mirror, and density fluctua-
tions in the instrument associated with air currents.

In Fig. 4, vertical bars represent the change in the
calculated OH column abundance that is produced by
a 5% change in the x? minimization when the syn-
thetic spectra are matched to measured OH features.
This is an indication of the measurement precision.
For the data collected from November 1998 to June
2000, the median uncertainty on the fit by use of the
®1(2) line was +18%, and the median uncertainty on
the fit by use of the P1(1) line was +15%.

We can obtain an upper limit on the uncertainty for
the accuracy of the measurement by considering mea-
surements collected on subsequent days at nearly the
same solar zenith angle. The median standard de-
viation scatter of measurements at nearly the same
solar zenith angle is =15% when the column abun-
dances collected from November 1998 to June 2000
for the strongest absorption lines are averaged. The
range of the standard deviation is 10—22%, depend-
ing on the solar zenith angle. A more rigorous anal-



Table 1. Estimate of FTUVS Measurement Uncertainty

Estimate
Error Sources (%) Description
Systematic
Line center cross section +10 OH vibrational level measured lifetime uncertainty.
*7 Stratospheric temperature uncertainty in column.
Other absorptions ? Possible unidentified absorption features at the location of OH lines.
Random
Spectral distortions +10 Instrument stability, air currents, acoustic and electronic noise.
Photon noise +2 Poisson counting statistics.
Pointing system +10 Positioning drift on Sun. Spectrum Doppler shift changes. Inte-
grated solar spectrum shape affected.
Constraining the fit *15 Match observed spectra with modeled line shape. Residuals as-
(least-squares x? optimization) sessed with a 5% variation about the x* minimum.
Total +22 Accuracy

ysis of the entire data set, observation precision, and
comparison with the modeled OH profile is in prep-
aration.?® The sources of these uncertainties, both
systematic and random, are summarized in Table 1.

4. Summary

We have demonstrated a compact, high-resolution,
actively aligned FTS for UV-visible atmospheric
spectroscopy and have applied it to the measure-
ment of OH column abundances. Design of the
FTUVS, with emphasis on high throughput and the
retrieval of multiple OH spectral lines, has resulted
in a data record with higher temporal resolution
and precision than any obtained previously. The
small footprint of the instrument and its all-flexure
design are compatible with future space flight ap-
plications aimed at high-resolution UV-visible
spectroscopy of Earth and planetary atmospheres.
Measurements of the OH column are being used to
validate modeled stratospheric chemistry, includ-
ing seasonal variability of OH related to satellite
and ground-based measurements of upper-
atmospheric ozone and water vapor,34 as well as the
short time-scale effects of solar coupling, dynamics,
and related chemistry.

Analysis of similar terrestrial atmospheric column
data sets for NO3, NO,, and O3 observed with the
FTUVS instrument with the following instrument
operation modes are under way: (1) full disk lunar
observations at 15,106 cm ! (662 nm) for nighttime
abundances of NOj, (2) zenith sky observations of
multiply scattered sunlight for the detection of Og
and NO,, and (3) direct solar observations for the
detection of NO,,.

The capabilities of this instrument will be exer-
cised in an attempt to measure other atmospheric
free radicals, including BrO, 10, and OCIO, exploit-
ing the broad spectral coverage and high resolution of
this instrument. The FTUVS is colocated at the JPL
Table Mountain Facility with several other instru-
ments to investigate changes in, and the interactions
of, HO,, NO,, and ClO, families with ozone. Results
from this complementary set of measurements are
being analyzed to enable critical comparisons be-

tween observed and modeled ozone depletion and
stratospheric change.
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